THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH 2078 Honours Algebraic Structures 2023-24
 Tutorial 8 Problems
 18th March 2024

- If you have any questions, please contact Eddie Lam via echlam@math.cuhk.edu.hk or in person during office hours.

1. Let $(R,+, \times)$ be a ring, and R^{\times}be the set of units in R, show that $\left(R^{\times}, \times\right)$is a group. Find the groups of units for the following rings:
(a) \mathbb{Z}_{20}.
(b) The ring of n by n matrices with complex coefficients $M_{n \times n}(\mathbb{C})$.
(c) The polynomial ring $R[x]$ where R is an integral domain.
2. Let G be an abelian groups, denote $R=\operatorname{End}(G)$ the set of group homomorphism from G to itself, define operations,$+ \circ$ on R by $(\varphi+\psi)(g):=\varphi(g) \cdot \psi(g)$ where \cdot is the group operation on G and $(\varphi \circ \psi)(g)=\varphi(\psi(g))$. Prove that $\operatorname{End}(G)$ is a ring and compute $\operatorname{End}\left(\mathbb{Z}_{p}\right)$ where p is a prime.
3. Let R be a finite commutative ring, show that every nonzero element is either a unit or a zero divisor. What if R is not assumed to be finite?
4. Let R, S be rings, define binary operations,$+ *$ on $R \times S$ by $\left(r_{1}, s_{1}\right)+\left(r_{2}, s_{2}\right)=$ $\left(r_{1}+r_{2}, s_{1}+s_{2}\right)$ and $\left(r_{1}, s_{1}\right) *\left(r_{2}, s_{2}\right)=\left(r_{1} r_{2}, s_{1} s_{2}\right)$. Prove that $R \times S$ is a ring with these operations. Show that if R, S are non-trivial, then $R \times S$ necessarily contains zero divisors, and hence cannot be an integral domain. $R \times S$ is called the product ring.
5. (a) Let S be a non-empty set, and $P(S)$ be the power set, i.e. $P(S)=\{A \subset S\}$ the set of all subsets of S. Define binary operations + and $*$ on $P(S)$ by

$$
A+B:=(A \cup B) \backslash(A \cap B) \text { and } A * B:=A \cap B
$$

Prove that $(P(S),+, *)$ is a ring.
(b) Prove that $A+A=0$ and $A * A=A$.
(c) In general, a ring R satisfying $x * x=x$ for all $x \in R$ is called a Boolean ring. Prove that $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ is also a Boolean ring. (Here the index n denotes product ring of n copies of $\mathbb{Z} / 2 \mathbb{Z}$.)
(d) Prove that a Boolean ring R is always commutative. And that R is an integral domain if and only if $R \cong \mathbb{Z} / 2 \mathbb{Z}$.

